
LA-UR-17-28985
Approved for public release; distribution is unlimited.

Title: Status Report on the MCNP 2020 Initiative

Author(s): Brown, Forrest B.
Rising, Michael Evan

Intended for: MCNP information

Issued: 2017-10-02

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

	 -	1	-	

Status	Report	on	the	MCNP	2020	Initiative	

	

Forrest	B.	Brown	&	Michael	E.	Rising	

Monte	Carlo	Methods,	Codes,	&	Applications	Group	(XCP-3)	

X	Computational	Physics	Division,	LANL	

2017-09-25	

	

I.		Introduction	

The	discussion	below	provides	a	status	report	on	the	MCNP	2020	initiative.	It	
includes	discussion	of	the	history	of	MCNP	2020,	accomplishments	during	2013-17,	
priorities	for	near-term	development,	other	related	efforts,	a	brief	summary,	and	a	
list	of	references	for	the	plans	and	work	accomplished.	

	

II.		History	

The	year	2017	is	the	70th	anniversary	of	the	first	Monte	Carlo	(MC)	computer	code	
for	radiation	transport	written	by	John	von	Neumann	for	LANL	and	the	ENIAC	
computer,	and	the	40th	anniversary	of	the	first	release	of	the	MCNP	MC	code.	MCNP	
was	a	merger	of	several	smaller	MC	codes	from	LANL,	derived	from	von	Neumann's	
seminal	work	and	made	possible	by	the	greatly	increased	speed	and	memory	size	of	
the	1970s	computers.	Why	does	this	matter?		Computer	architecture,	performance,	
and	programming	have	changed	drastically	over	the	past	70	years;	the	overall	
structure,	algorithms,	and	programming	of	MCNP	have	not.	

Over	the	past	40	years,	100s	of	new	"features"	were	added	to	MCNP,	largely	by	
kludging	the	features	on	top	of	the	existing	code	base.	During	2001-2002,	the	code	
was	overhauled	to	conform	to	the	Fortran-90	coding	standards	of	the	time.	No	
changes	were	made	to	the	fundamental	code	data	structures	and	algorithms,	except	
that	full	support	for	multi-level	parallelism	(multicore	threading	plus	MPI)	was	
provided.	A	detailed	review	of	the	MCNP	coding	today	reveals	a	Rube	Goldberg	
approach	-	an	incredibly	powerful,	accurate,	multi-featured,	mature	MC	code	-	that	
is	extremely	fragile,	hard	to	maintain,	and	difficult	to	adapt	to	the	rapid	changes	
occurring	in	computer	architecture.	

In	2013,	the	MCNP	2020	initiative	[1-5]	was	proposed	to	address	the	many	years	of	
neglecting	improvements	to	code	infrastructure	and	algorithms.	The	proposal	was	
founded	on	experience	based	on	a	100%	success	rate	for	5	similar	previous	
endeavors.	The	key	elements	of	the	MCNP-2020	proposal	included:	

MCNP	2020	Status	

	 -	2	-	

1. Improve	code	performance	

With	a	faster	MC	code,	analysts	can	run	more	calculations	in	a	given	amount	
of	time,	leading	directly	to	improved	quality	and	realism.	

Goal:	 					Provide	a	2x	speedup	within	2	years.	

2. Upgrade	core	MCNP6	software	

Review	and	upgrade	the	most-used	(core)	coding	in	MCNP6.	This	includes	
efforts	to:		restructure	the	core	coding;	clean	up	the	algorithms	and	coding	
syntax;	comply	with	Fortran	and	C++	coding	standards;	reorganize	data	
structures;	and	more.	

This	is	to	be	achieved	by	evolution,	not	revolution.	That	is,	a	major	rewrite-
from-scratch	effort	is	not	feasible	for	a	large	complex	code	such	as	MCNP6;	
instead	many	incremental	changes	and	structural	changes	are	needed	to	
make	progress	while	retaining	all	code	capabilities.	

Goal:	 Produce	a	sustainable	code,	with	reduced	costs	for	future	
development	and	maintenance.	

3. Prepare	for	the	future	

The	next	generations	of	advanced	computers	will	have	massive	parallelism,	
with	millions	of	cpu-cores.	It	is	expected,	however,	that	the	available	memory	
per	cpu-core	will	not	increase	and	may	even	decrease.	Accordingly,	
significant	effort	must	be	applied	to	improving	the	parallel	computing	
algorithms	used	in	MCNP,	including	both	MPI	message-passing	and	OpenMP	
threading.	While	MCNP6	currently	uses	both	MPI	and	threading,	the	
algorithms	were	targeted	to	100s	or	1000s	of	cpu-cores,	not	millions.	

In	addition,	future	systems	will	be	heterogeneous,	with	a	mix	of	cpus,	gpus,	
mics	(many	integrated	cores),	reconfigurable	fpgas	(field	programmable	gate	
arrays),	and	graphics	processors.		

Goal:	 Produce	more	flexible	and	adaptable	code,	with	capabilities	for	
massive	parallelism	and	heterogeneous	processing.	

Full	support	for	the	MCNP	2020	effort	would	require	a	full-time	dedicated	team	of	
3-4	highly	computer-literate	nuclear	engineers	or	physicists	devoted	not	to	
"feature"	development,	but	to	overhauling	the	code	algorithms,	data	structures,	
parallelism,	and	more	for	the	base	code	structure.	Code	modernization	would	
provide	a	robust,	maintainable,	and	extensible	code	base	that	could	be	readily	
adapted	to	the	coming	exascale	systems	and	permit	faster	integration	of	new	
"features."	

	

MCNP	2020	Status	

	 -	3	-	

III.		Accomplishments,	2013-17	

Since	2013,	the	DOE-NNSA	Nuclear	Criticality	Safety	Program	(NCSP)	has	
enthusiastically	supported	the	MCNP	2020	initiative;	other	MCNP	sponsors	have	
provided	only	occasional	minor	support.	Because	of	this,	only	a	few	of	the	proposed	
tasks	have	been	accomplished,	with	100%	success,	and	those	tasks	are	closely	tied	
to	NCSP	needs	[6-9]:	

1. MCNP6	performance	improvements	

In	2013-14,	an	intense	effort	was	made	to	speed	up	the	code	[10-12].	For	
single-thread	performance,	many	classic	code	optimization	techniques	were	
applied.	In	addition,	a	dramatic	speed	increase	came	from	the	development	
of	a	novel	hash-based	energy	lookup	scheme	coupled	with	inline	binary	
searches	(both	had	previously	consumed	35-50%	of	overall	cpu	time).	
Parallel	threading	was	also	somewhat	improved.	The	result	of	these	
optimizations	was	roughly	a	2x	speedup	for	nuclear	criticality	safety	
problems.	The	resultant	code	was	released	to	users	as	MCNP6.1.1	in	2014.	
The	goal	for	this	initial	portion	of	MCNP	2020	was	met.	

2. Fortran-2003	standards	compliance	

Beginning	in	the	summer	of	2014,	discussions	with	the	MCNP	development	
team	lead	to	a	team-wide	effort	to	upgrade	the	MCNP6	Fortran	coding	to	fully	
comply	with	the	Fortran-2003	International	Standard.	At	that	time,	there	
were	over	3,000	instances	of	nonstandard	coding	involving	100s	of	source	
files.	All	team	members	reviewed	sections	of	the	coding	that	they	were	most	
familiar	with	and	made	any	coding	changes	necessary	to	comply	with	the	
Fortran-2003	standard.	Note	that	these	changes	were	in	coding	syntax	only,	
not	algorithms.	This	was	considered	a	low-priority	background	task,	and	was	
completed	in	2015.	Over	500k	lines	of	Fortran	coding	were	reviewed	and	
brought	into	compliance.	Since	2015,	MCNP6	has	been	100%	compliant	with	
the	Fortran-2003	standard.	In	addition,	the	current	procedures	for	building	
the	code	enforce	this	requirement,	checking	for	standards-compliance	every	
time	anyone	compiles	any	version	of	MCNP6.	This	task	was	a	small	part	of	
the	“upgrade	core	MCNP6	software”	portion	of	MCNP	2020,	and	was	entirely	
successful.	

3. Parallel	algorithm	improvements	

A	number	of	minor	improvements	in	parallel	algorithms	were	made	to	
MCNP6	over	the	past	few	years.	One	algorithm	improvement	led	to	the	
elimination	of	a	parallel	bottleneck	for	large	criticality	calculations	–	
reordering	the	fission	bank	between	cycles.	Other	minor	improvements	to	
OpenMP	threading	were	also	made	for	the	range	of	100-1000	cpu-cores.	
MCNP6	was	also	tested	on	the	Intel	Xeon	Phi	mic	processor,	where	240	
threads/processor	are	needed	for	effective	use.		

MCNP	2020	Status	

	 -	4	-	

	

While	these	minor	efforts	were	successful,	the	impact	was	low	for	current	
computing	systems.	The	payoff	from	these	improvements	will	be	apparent	
over	the	next	generations	of	computers.	The	effort	in	this	area	will	of	course	
continue.	

4. Modernization	

With	the	upgrade	of	MCNP6	to	Fortran-2003	standards	compliance,	the	
decision	was	made	to	only	allow	Fortran	compilers	that	fully	support	that	
standard	(e.g.,	Intel,	gfortran).	Older	Fortran	compliers	that	don’t	support	
Fortran-2003	cannot	be	used	for	compiling	MCNP6.	With	that	requirement	in	
place,	a	number	of	Fortran	features	that	were	avoided	in	the	past	can	now	be	
safely	used.	The	most	significant	of	these	is	polymorphism.	Previously,	when	
a	routine	could	be	invoked	with	different	types	of	arguments,	separate	copies	
of	the	routine	were	needed	–	one	for	each	type	of	argument.	This	led	to	the	
replication	of	large	blocks	of	coding,	creating	an	error-prone	situation	where	
any	changes	needed	to	be	replicated	in	many	different	sections	of	coding.	
Using	Fortran-2003	polymorphism,	all	of	the	instances	can	be	combined,	
reducing	duplication	and	tedious	corrections.	This	capability	is	being	used	in	
a	few	portions	of	MCNP6	today,	with	more	planned	as	needed.	

	

IV.		Priorities	for	Near-Term	Development	

Most	of	the	current	development	activities	by	the	MCNP	developers	are	driven	by	
programmatic	needs	at	LANL,	by	programmatic	needs	of	MCNP	sponsoring	agencies,	
and	by	the	needs	of	the	MCNP	user	community.	The	discussion	that	follows	is	
separate	from	those	application	needs	and	only	addresses	activities	and	priorities	
for	tasks	related	directly	to	the	MCNP	2020	initiative	(i.e.,	performance,	code	and	
data	structures,	modernization,	and	preparing	for	future	computers).	

A.		List-Tallies	and	Tally-Servers	

From	a	high-level	viewpoint,	the	most	important,	critical	need	in	MC	code	
advancement	is	to	decouple	the	compact	cpu-intensive	random	walk	simulation	
from	the	huge	memory	address	space	required	for	today's	detailed	tallies	(i.e.,	
results,	especially	large	mesh	tallies).	The	MCNP	2020	proposal	included	tasks	for	
"list-tallies"	and	"tally-servers"	to	address	this	need.	The	coming	exascale	systems	
will	not	work	effectively	for	MC	unless	these	tasks	are	completed.		

Brown	proposed	the	idea	of	list-tallies	and	tally-servers	as	a	PhD	thesis	topic	for	an	
MIT	graduate	student	in	2009	[13].	The	method	was	found	to	work	effectively,	
enabling	very	large	mesh	tallies.	A	number	of	other	MC	researchers	around	the	
world	have	also	begun	to	adopt	the	list-tally	+	tally-server	approach	to	handle	large-
scale	MC	problems.	

MCNP	2020	Status	

	 -	5	-	

The	basic	idea	is	that	near-term	advanced	computers	may	have	millions	of	cpu-cores,	
but	limited	memory	per	core.	Simulating	the	random	walks	in	a	MC	calculation	
requires	only	modest	storage	for	geometry	and	nuclear	data,	so	that	the	basic	
random	walk	simulation	could	readily	be	replicated	millions	of	times.	However,	
current	MC	codes	couple	the	simulation	with	a	potentially	very	large	storage	space	
for	the	tally	data.	In	current	usage	of	MC	codes,	mesh	tallies	can	require	100s	or	
1000s	of	GBs	of	storage,	which	cannot	be	replicated	across	millions	of	cpu-cores.	
While	tally	storage	can	of	course	be	shared,	the	overhead	from	lock-contention	(to	
preserve	correctness	of	the	tallies)	would	almost	certainly	be	excessive	and	
prohibitive	when	millions	of	cpus	are	targeting	the	same	tally	address	space.	In	
addition,	communication	delays	for	non-local	memory	access	could	be	significant.	
The	natural	solution	to	this	problem	is	to	return	to	the	roots	of	MC	–	perform	the	
simulation	on	millions	of	cpus,	each	producing	list-tally	information	that	would	be	
collected	and	processed	elsewhere.	Only	2	items	are	required	per	tally	–	the	index	of	
a	tally	bin	and	the	value	to	be	added,	so	that	the	list-tally	information	is	very	
compact.	Tally-servers	could	collect	the	lists	and	then	process	tallies	efficiently	
(perhaps	in	segments,	tiles,	or	blocks)	using	vector	operation	on	cpus	or	gpus.	This	
approach	separates	the	compute-intensive	simulation	with	modest	address	space	
from	the	simpler	processing	of	tallies	with	huge	address	space.	It	also	enables	an	
asynchronous	heterogeneous	processing	approach	with	cpus	or	mics	for	the	
simulation,	and	cpus	or	mics	or	gpus	for	the	tally	processing.	

Since	the	proposal	for	the	MCNP	2020	initiative,	additional	consideration	and	
planning	has	suggested	that	the	following	sequence	be	followed	in	implementing	the	
list-tally	+	tally-server	approach:	

1. Apply	the	methodology	to	a	single	(but	important)	feature	in	MCNP,	the	
PTRAC	feature	(discussed	next).	It	is	very	straightforward	to	apply	the	list-
tally	approach	to	PTRAC,	buffering	lists	of	event	information	and	then	
flushing	to	an	output	file	later.	Experience	gained	in	this	first	straightforward	
application	would	ease	the	adoption	for	more	complicated	tally	features.	This	
would	also	facilitate	PTRAC	for	parallel	calculations	(currently	prohibited).	

2. Apply	the	methodology	to	mesh	tallies.	This	would	have	an	immediate	
impact	on	some	of	the	very	large	memory	problems	that	analysts	struggle	
with	today.	The	approach	would	be	staged:	list-tallies	without	a	separate	
tally-server,	list	tallies	with	a	single	tally-server,	and	finally	list-tallies	with	
multiple	tally-servers	and	routing.	

3. Apply	the	methodology	to	all	other	standard	MCNP	tallies.	This	could	be	
challenging,	due	to	the	very	general	tally	capabilities	with	many	special	cases.	

B.		Parallel	PTRAC	

The	PTRAC	feature	in	MCNP	provides	the	ability	to	produce	a	log	of	the	detailed	
physics	and	geometry	information	for	each	event	that	occurs	in	the	simulation	of	an	
individual	particle.	Essentially,	all	of	the	detailed	steps	in	the	simulation	produce	
output	that	can	be	post-processed	by	some	other	program	or	script.	Normally	this	

MCNP	2020	Status	

	 -	6	-	

kind	of	detailed	event-by-event	output	for	every	particle	is	suppressed	to	avoid	the	
huge	amount	of	data	produced.	Instead,	MCNP	internally	uses	this	information	to	
produce	the	normal	tally	output.	When	users	need	to	manipulate	this	data,	typically	
to	perform	certain	tallies	that	cannot	be	handled	by	standard	MCNP	features,	PTRAC	
is	invoked	to	record	the	detailed	simulation	data	for	post-processing.	(As	a	historical	
note,	nearly	all	of	the	original	MC	codes	in	the	1950-60s	worked	this	way.	The	MC	
codes	did	only	the	simulation,	dumping	all	event	information	to	a	“runtape.”	Other	
codes	read	the	“runtape”	and	then	performed	the	tally	operations	for	results.	This	
approach	was	needed	due	to	the	small	computer	memories	of	the	time.)	

Since	the	release	of	MCNP5	in	the	early	2000s,	the	PTRAC	feature	could	not	be	used	
in	parallel	calculations;	long-running	sequential	execution	was	required.	This	
situation	has	continued	through	the	current	MCNP6.2.	In	the	past	few	years,	the	use	
of	PTRAC	has	increased	due	to	homeland-security-related	needs	for	detector	
analysis	and	the	production	of	“list-mode”	data	for	simulations	of	critical	
experiments.	(The	list-mode	data	from	a	simulation	is	produced	in	the	same	format	
as	the	data	obtained	from	detectors	in	the	experiments,	and	is	processed	identical	to	
the	experiment	data.)		

While	there	are	a	number	of	straightforward	ways	to	modify	the	PTRAC	scheme	to	
permit	parallel	calculations,	parallel	PTRAC	provides	a	very	timely	application	of	the	
list-tally	approach	mentioned	in	MCNP	2020.	Lessons-learned	from	this	effort	
should	benefit	the	subsequent	application	of	list-tallies	+	tally-servers	to	other	type	
of	MCNP	tallies.	

C.		Memory	Management	and	Generalized	Stacks	

A	very	large	amount	of	MCNP	coding	is	devoted	to	processing	problem	input,	
determining	the	memory	required	for	each	data	array	in	the	problem	(depending	on	
input	options,	some	arrays	are	not	needed,	others	are),	and	then	allocating	the	
memory.	There	are	many	1000s	of	lines	of	extremely	ugly	and	confusing	coding	
devoted	to	these	tasks,	and	the	coding	is	very	prone	to	inadvertent	coding	errors.	In	
addition,	the	coding	is	nearly	impossible	to	review	and	check,	and	is	a	significant	
bottleneck	for	new	developers	or	even	experienced	developers	in	adding	any	new	
features.	Nearly	all	of	the	current	difficulties	could	be	resolved	by	implementing	a	
memory	manager.	The	memory	manager	could	keep	track	of	which	arrays	were	
allocated	along	with	the	size	and	dimensions,	could	perform	the	needed	error-
checking	and	provide	consistent	error	messages,	and	could	be	used	to	facilitate	a	
new	generalized	direct-access	restart	file	(i.e.,	dumpfile,	runtpe).	An	initial	version	
of	an	MCNP	memory	manager	was	prototyped	over	the	last	year	or	so,	using	
Fortran-2003	polymorphism.	It	was	found	to	greatly	simplify,	streamline,	and	clarify	
the	memory	allocation	in	MCNP6	where	it	was	applied.	This	prototype	could	be	
readily	implemented	everywhere	with	modest	effort.		

Currently	some	data	arrays	are	allocated	with	an	arbitrary	size,	elements	are	added,	
and	then	if	the	array	fills	up	it	is	reallocated	and	copied	from	the	old	to	new	space.	
This	approach	works,	but	is	error-prone,	inefficient,	and	difficult	for	developers	to	

MCNP	2020	Status	

	 -	7	-	

work	with.	A	much	better	approach	is	to	implement	a	general	stack-based	scheme	
with	linked-list	storage.	This	would	make	use	of	the	Fortran-2003	polymorphism	to	
handle	any	type	of	array	or	complex	data	objects.	Such	a	unified	approach	to	
expandable	memory	storage	would	simplify	dozens	of	different	areas	in	the	MCNP	
coding,	greatly	ease	future	development,	and	conserve	memory	size	for	a	problem.	
The	mechanism	could	also	be	used	in	implementing	the	list-tally	approach,	since	the	
size	of	the	list-tally	arrays	is	not	known	in	advance.	

D.		Explicit	Threading	Loop	and	Dispatch	Algorithm	

The	current	OpenMP	threading	approach	in	MCNP6	essentially	starts	the	requested	
number	of	threads	in	concurrent	infinite	loops.	Each	thread	locks	certain	variables,	
checks	to	see	if	another	particle	should	be	run,	grabs	the	particle	number,	
increments	some	global	control	variables,	then	unlocks	memory	and	runs	that	
particle	history.	The	algorithm	is	essentially	concurrent	infinite	loops	with	exit	
points.	A	better	approach	is	a	single	dispatch	loop	over	defined	particle	numbers,	
with	each	iteration	of	the	loop	handled	by	a	different	thread.	This	would	introduce	
some	predictability	for	enabling	fault-tolerance,	permit	more	control	over	binding	
particles	to	threads,	permit	options	on	thread	sequencing,	and	eliminate	some	of	the	
current	lock/unlock	overhead.	This	may	be	necessary	for	scaling	up	from	1000s	of	
threads	to	millions	of	threads	in	the	future.	

E.		Storage	Changes	for	Improved	Cache	Usage	

For	historical	reasons,	most	of	the	data	storage	in	MCNP6	is	based	on	a	structure-of-
arrays	(SOA)	approach.	That	is,	for	cell-related	data,	there	is	an	array	of	the	material	
in	each	cell,	an	array	of	the	temperature	of	each	cell,	an	array	of	indexes	for	the	
isotope-lists	for	each	cell,	an	array	of	flags	for	treating	fission	in	each	cell,	etc.,	etc.	
This	approach	was	required	until	the	2000s,	due	to	the	lack	of	features	in	old-style	
Fortran	for	defining	objects	(i.e.,	defined-types	in	Fortran,	structures	or	classes	in	
C++).	When	a	particle	is	in	a	cell,	information	must	be	fetched	separately	from	
arbitrarily-located	data	arrays	(e.g.,	material,	temperature,	index	for	isotope-list,	
etc.).	Due	to	the	essentially	random	memory	layout,	each	of	the	memory	accesses	
leads	to	a	cache-miss	and	very	much	longer	access	times.	About	70%	of	MCNP	
operations	during	simulation	are	in	this	state,	with	only	about	30%	or	less	involved	
in	arithmetic.			

Today	Fortran-2003	permits	the	definition	of	objects	(or	structures	or	defined	
types),	where	all	of	the	properties	may	be	group	together.	This	is	termed	an	array-
of-structures	(AOS)	approach.	For	the	cell	example,	there	could	be	a	“cell	object”	
which	would	contain	the	material,	temperature,	etc.,	for	a	cell,	and	there	would	be	
an	array	of	these	objects.	When	a	particle	enters	a	cell,	the	cell	object	would	be	
referenced,	fetching	all	of	the	relevant	cell	properties	together.	This	could	greatly	
reduce	cache-misses	and	cache-contention,	especially	for	threaded	calculations.	

MCNP	2020	Status	

	 -	8	-	

Conversion	of	MCNP6	from	an	SOA	approach	to	an	AOS	approach	should	be	done	
gradually	and	methodically,	with	performance	monitored	at	each	incremental	step.	
Relevant	data	include	cells,	surfaces,	materials,	and	other	quantities.	

	 F.		Direct-Access	Run-tape	File	

To	provide	some	fault-tolerance	for	computer	system	crashes	during	long	running	
MC	calculations,	MCNP	has	always	relied	on	the	simple,	time-tested	approach	of	
periodically	writing	all	current	data	to	a	“runtpe”	file	(also	commonly	called	a	run-
tape	file,	dump	file,	or	restart	file).	Unfortunately,	there	has	never	been	a	standard	
format	for	the	MCNP	run-tape	file.	All	data	and	arrays	are	written	sequentially	to	the	
file	with	explicit	sequential-access	output	statements,	and	the	file	is	read	for	
subsequent	restarts	sequentially,	array	by	array	with	explicit	input	statements.	
Adding	even	1	extra	variable	to	the	data	saved	on	the	run-tape	makes	the	file	
unreadable	by	previous	versions	of	MCNP.	In	addition,	to	retrieve	even	1	number	
from	a	run-tape	requires	reading	the	entire	file	in	exactly	the	same	order	as	it	was	
written.	All	of	these	inconveniences	become	serious	problems	for	many	current	
calculations	where	run-tapes	can	be	many	GBs	or	100s	of	GBs	in	size.	

It	is	straightforward	to	define	a	standard	format	for	the	run-tape	file,	using	named	
sections	of	data,	a	direct-access	format,	and	a	table	of	contents	for	directly	locating	
data	by	name.	Single	data	items	or	arrays	could	then	be	quickly	and	easily	retrieved	
(without	sequentially	reading	the	entire	file).	Run-tapes	could	be	interchanged	
among	different	versions	of	MCNP	(as	long	as	the	versions	supported	the	features	
actually	used	in	a	calculation).	Many	other	MC	codes	have	well-defined	run-tape	
formats,	named	data	sections,	and	direct-access	capabilities.	

	

V.		Other	Related	Work	

The	XCP-3	Group	management	announced	in	September	2017	that	a	new	initiative	
will	begin	to	modernize	the	XCP-3	MC	codes.	This	will	be	supported	by	LANL	
institutional	funding	(through	PADWP	and	PADGS)	and	by	some	funding	from	the	
DOE-NNSA-ASC	Program,	totaling	about	4	FTE	per	year	for	the	next	3-4	years.	The	
principle	goal	for	this	modernization	is	to	share	common	MC	components	among	
MCNP6,	the	MCATK	toolkit,	and	other	MC	codes	supported	by	the	group,	in	order	to	
reduce	development	effort,	share	best	coding	and	algorithms,	reduce	maintenance	
costs,	and	fully	comply	with	DOE-NNSA	software	quality	assurance	(SQA)	
requirements	(DOE	Order	414.1D,	LANL	Policy	P1040_Rev9).	To	avoid	duplication	
of	effort,	a	common	library	or	framework	of	routines	will	be	assembled	and	shared	
among	the	various	MC	codes.	These	common	routines	are	also	required	to	include	
documentation,	unit	test	routines,	and	verification-validation	results	where	
appropriate.	This	modernization	effort	is	in	the	planning	stages	now,	with	work	
expected	to	begin	in	2018.	

This	effort	is	focused	on	all	of	the	MC	codes	supported	by	XCP-3.	This	important	
work	is	neither	a	replacement	for	nor	an	alternative	to	the	ideas	included	in	the	

MCNP	2020	Status	

	 -	9	-	

MCNP	2020	initiative.	Both	efforts	are	needed	–	one	provides	a	common	support	
platform	and	compliance	with	SQA	requirements	for	the	suite	of	XCP-3	MC	codes;	
the	other	provides	guidance	and	improvements	to	the	detailed	MC	coding,	data	
structures,	and	algorithms.	Coordination	is	necessary	of	course.	

	

VI.		Summary	

The	discussion	above	has	provided	background,	recent	accomplishments,	and	high-
level	plans	for	near-term	development	related	to	the	MCNP	2020	initiative.	The	
tasks	accomplished	to	date	have	been	successful,	but	of	course	much	more	work	is	
needed.	Many	of	the	tasks	carried	out	in	2016-17	were	prototype	efforts,	to	be	fully	
included	into	MCNP6	after	the	final	release	of	MCNP6.2	(expected	October	2017).		It	
is	expected	that	this	work	will	continue	indefinitely	at	a	low-to-moderate	level	of	
effort.	

	

	

	
	 	

MCNP	2020	Status	

	 -	10	-	

References	

	
1. F.B.	Brown,	B.C.	Kiedrowski,	J.S.	Bull,	L.J.	Cox,	“MCNP	2020	–	Preparing	LANL	

Monte	Carlo	for	Exascale	Computer	Systems,”,	white	paper	from	2013,	LA-UR-
15-22524	(2015)	

2. F.B.	Brown,	“MCNP	2020	–	An	initiative	to	preserve	70	years	of	LANL	investment	
in	Monte	Carlo	radiation	transport	&	prepare	for	future	computer	systems,”	
presentation,	LA-UR-15-22523	(2015).	

3. F.B.	Brown,	“Recent	Advances	and	Future	Prospects	for	Monte	Carlo”,	Progress	in	
Nuclear	Science	&	 Technology	,	Vol.	2	[also	LA-UR-10-05634]	(2011).		

4. F.B.	Brown,	“Theory	&	Practice	of	Criticality	Calculations	with	MCNP5,”	class	
notes,	LA-UR-08-0849	(2008).	

5. Forrest	Brown,	“Fundamentals	of	Monte	Carlo	Particle	Transport”,	lecture	notes	
for	LANL	class,	LA-UR-05-4983,	(2005).	

6. F.B.	Brown,	B.C.	Kiedrowski,	J.S.	Bull,	"MCNP	Progress	&	Performance	
Improvements",	talk	at	DOE	NCSP	Technical	Program	Review,	LANL,	March	
2015,	LA-UR-14-21786	(2014)	

7. F.B.	Brown,	J.S.	Bull,	M.E.	Rising,	"MCNP	Progress	&	Performance	
Improvements",	talk	at	DOE	NCSP	Technical	Program	Review,	LLNL,	March	
2015,	LA-UR-15-21869	(2015)	  	

8. F.B.	Brown,	M.E.	Rising,	J.L.	Alwin,	"MCNP	Progress	for	NCSP",	presentation	at	
DOE	NCSP	Technical	Program	Review,	Sandia	National	Laboratory,	March	15-16,	
2016,	LA-UR-16-21302	(2016)	  	

9. F.B.	Brown,	M.E.	Rising,	J.L.	Alwin,	"MCNP	Progress	for	NCSP",	presentation	at	
DOE	NCSP	Technical	Program	Review,	Washington	DC,	March	14,	2017,	LA-UR-
17-21840	(2017)	  	

10. F.B.	Brown,	"MCNP6	Monte	Carlo	Code	Optimization",	Proc.	ANS	M&C	+	SNA	+	
MC	2015,	Nashville,	TN,	April	2015,	LA-UR-15-20019	(2016)	  	

11. F.B.	Brown,	"MCNP6	Optimization	and	Testing	for	Criticality	Safety	Calculations",	
Trans.	ANS	112,	San	Antonio,	TX,	June	2015,	LA-UR-15-20422	(2015)	  	

12. F.B.	Brown,	“New	Hash-based	Energy	Lookup	Algorithm	for	Monte	Carlo	Codes”,	
ANS	2014	Winter	Meeting,	Anaheim	CA,	LA-UR-14-24530	(2014)	  	

13. P.K.	Romano,	“Parallel	Algorithms	for	Monte	Carlo	Particle	Transport	Simulation	
on	Exascale	Computing	Architectures,”	PhD	thesis,	Dept.	Nuclear	Science	&	
Engineering,	MIT	(2013).	

